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Using a simple symmetrizability criterion, we show that symmetric systems of 
conservation laws are equipped with a one-parameter family of entropy functions. 
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1. INTRODUCTION 

An entropy function associated with a system of N conservation laws 

(1.1) 

is a convex function, U, augmented by an entropy flux function, F, both 
taking values from RN smoothly into R, such that for any smooth 
u = u(x, t) satisfying (1.1) we have 

(1.2) 

Carrying out the differentation in (1.2) we find, because of (l.l), that the 
above requirement amounts to the following integrability condition 

u,‘(u) fu(u) = C(U). (1.3) 

Entropy functions play a significant role in the theory of systems of con- 
servation laws. As observed by Friedrichs and Lax [ 11, if U is an entropy 
function for system (1.1 ), then its Hessian, U,,, symmetrizes that system, 
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i.e., symmetrizes,/,. It is fairly easy to see that the converse is also true; for 
future reference we can therefore state 

THEOREM 1. A conve.~ U stwes us an entropy fimction ,fiw s),stem ( 1. I ), 
if and only $ its Hrssiun, U,,,, .yymmetrizes J;,, 

U,,,,.f, = ( U,,.f,,) ‘: (1.4) 

For the sake of completeness we include the proof. If U is an entropy in 
the sense that (1.3) holds, further differentation gives 

The Hessian on the right is symmetric and so is the second matrix on the 
left, being the product of a vector and a 3-tensor; hence, their difference, 
U,,fu, is symmetric. Conversely, if U,,.f, is symmetric, so is (U,‘f,), = 
U,,f; + U,'f,,,. Hence U,f; has a primitive 

F(u)=l” U;~(w)f,.(w)~dw (1.5) 

such that (1.3) holds; in other words, the symmetry of Uuufu-or what 
amounts to the same thing, of (U,Tf,),-is required as a compatibility con- 
dition for F(u) to be well-defined, i.e., for the integral on the RHS of (1.5) 
to be path independent. 

We remark that the convexity of U did not enter into the proof, and was 
assumed just for the sake of complying with the definition of an entropy 
function being convex. Apart from it, the “if’ part of the above theorem, 
(1.4) provides us-unlike the integrability condition (1.3hwith a self- 
contained criterion for U being an entropy function. The “only if’ part 
of the theorem on the other hand, reveals the hyperbolic nature of systems 
equipped with entropy functions; indeed, multiplication of (1.1) by U,, 
on the left, puts the system in symmetric hyperbolic form (in the 
sense of Friedrichs), for which the local well-posedness theory of smooth 
solutions, prevails, see [ 11. 

It is well known that solutions for (1.1) may fail to be smooth at a finite 
time, after which one must admit these solutions in the weak sense. For the 
latter, the following entropy inequality is imposed as an admissibility 
criterion [ 3, 41 

~(W))+$‘W (weakly); (1.6) 
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the inequality (1.6) follows from considerations of the regularized problem 

(1.7,) 

letting E goes to zero, E LO. Thus, the nonpositive LHS of (1.6) indicates the 
existence of vanishing viscosity in an admissible weak solution. In [4], Lax 
postulated a uniqueness criterion to single out the so called “physically 
relevant” solution of (l.l), requiring the entropy inequality (1.6) to hold for 
all entropy functions associated with ( 1.1). This brings us to the question of 
how rich is the family of such entropies. 

In the scalar case, N= 1, this family consists of all smooth convex 
functions; in his penetrating paper [3], Kruzkov has shown, that having 
the entropy inequality (1.6) for the one-parameter family of convex 
functions U(u; 2) = \U - iI, A E R-which is in the convex hull of the for- 
mer-indeed single out the unique, physically relevant, stable solution in 
L’. The situation with the general nonscalar case, is however less favorable: 
the integrability condition is overdetermined unless N= 2, e.g., [4]. 

2. SYMMETRIC SYSTEMS OF CONSERVATION LAWS 

In this section we restrict our attention to symmetric systems of conser- 
vation laws, i.e., systems of the form (1.1) with symmetric Jacobians, 
f,= fl. We will show that such systems are equipped with one-parameter 
family of entropy functions. 

To this end we are making use of the symmetrizability criterion of 
Theorem 1, looking for Hessians which symmetrize fu, 

Uwfu =.fu~w (2.1) 

An obvious first choice for such a Hessian will be the identity matrix, 
U,, = I,. This coincides with Godunov’s observation, [2], (see also Cl]), 
that for symmetric systems, U(U) = t uT. u serves as entropy function, 
augmented by an entropy flux, see (1.5) F(u)=l wTfW(w). dw = u’f(u)- 
jU f(w). dw. Our next choice for symmetrizing Hessian will be f,: the 
assumed symmetry of f, implies, as argued before, that it is indeed a 
Hessian, f, = U,, with U(u) = jU f(w). dw, augmented by an entropy flux, 
see (1.5) F(u)rF(f(~))=~f~(u).f(u); furthermore, (2.1) is trivially 
satisfied with this choice (we note the identity UT(u)=FT(f) in this case, 
from which (1.3) follows upon multiplication by f,, on the right). However, 
the function U(u) so constructed is not convex since its Hessian, f,, is not 
necessarily positive definite. This can be easily overcome by considering a 
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sufficiently small neighborhood of the first convex choice of an entropy 
function. Thus we have shown 

THEOREM 2. Any symmetric s.vstem qf conservation laws, ( 1.1 ), is equip- 
ped with the ,followCng one-parameter family of entropy functions 

u(u;++~‘~u-~~ u f(w).dw, j/Z~R;ltif~<l} 
s (2.2a) 

with corresponding entropy fluxes 

F(u; I.) = UT. ,f(u)-~“~~).d~--5f~(U)..f(U). (2.2b) 

Let u,(u,) denote the state on the left (respectively, right) of a discon- 
tinuity moving with speed s and governed by system (1.1). The entropy 
inequality (1.2) across such discontinuity amounts to 

s[U(u,; A) - U(u,; i)] - [F(u,; ;1) - zqu,; A)] < 0. (2.3) 

Invoking the RankineeHugoniot (R-H) relation, s( U, - IA,) = f(u[) - f ( ur), 
the inequality (2.3) reads, after little rearrangement, 

(1 -l.+(f(u,)+,/(ur))+-z~,)+j~‘f(u)~dw]sO. 
u, 

Since 3. was chosen so that lsf,, < Z, the R-H relation implies that the first 
term on the left is positive; hence, the entropy inequality (2.3) for each of 
the i-parameter members U(u; A) in (2.2), is consistent with that of U(u; 0). 
Thus, the one-parameter entropies’ family, provides us with stability 
criteria which coincide with that derived from Godunov’s original choice, 
U(u) = + UT. u. 

3. A NOTE ON THE REGULARIZED PROBLEM 

We have mentioned before the parabolic regularized problem (1.7,), in 
connection with the entropy inequality (1.6). The key of studying 
system (1.7,) in the large, via standard energy methods, depends on obtain- 
ing ci priori information in the maximum norm lu(., t)lLa. Here we note 
that such information can be easily obtained when the symmetric 
system ( 1.1) is regularized via disspersiue term 

(3.1) 
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The proof is intimately related to the conserved entropies constructed in 
Section 2. Let ( .; )O denote the spatial L, - inner product of compactly sup- 
ported functions, 1 . 1: = (.; )O. Multiplying (3.1) by uT on the left and 
integrating we find, that 1~1; is conserved in time. Next, differentiate (3.1), 
multiply by u: and integrate to arrive at 

multiplying (3.1) by f ’ on the left, integrating and adding to the above we 
find that $lu.,(., t)lfj+jS,j”f(w).d w is also conserved. We remark that the 
last two conserved functionals are in exact agreement with the 
corresponding first two associated with KdV equation. Under appropriate 
growth assumptions on the flux, ,f, they yield the required maximum norm 
bound. 
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